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Reliability-Based Design Optimization (RBDO) in eletromagnetic field problems requires the calculatio of probability of failure
leading to huge computational cost in the case oXgensive models. Three different types of RBDO appraches using kriging surrogate
model are proposed to overcome this difficulty byritroducing an approximation of the objective and ofthe constraints. These methods
use different infill searching criteria to add newsamples in the process of optimization or/and in #areliability analysis. The enrichment
criteria and the best suited enrichment strategiesre discussed in this communication. These approaeb are compared in terms of

number of evaluations and accuracy of the solution.

Index Terms—Infill searching criteria, kriging model, reliabil ity analysis, reliability-based design optimization

|. INTRODUCTION

RELIABILITY -BASED DESIGN  OPTIMIZATION (RBDO)
approachesan be divided into Double-Loop (DLM),
Single-Loop (SLM) and Sequential Decoupled Meth@13M).
They have emerged in the past few decades and leecmre
and more popular in electromagnetics owing to thbility of
tackling the uncertainties. However, for expendivack-box
models, the computational burden becomes unbearable

To overcome this issue, iterative kriging surregatodels
have been proposed to reduce the number of evahsafi].
Infill Searching Criterion (ISC) was used with tlaém of
improving the quality of the surrogate model, aedrshing for
the solution of the optimization problem.

With the purpose of enhancing the efficiency, ddfe
strategies including the choice of the ISC anddsition for
samples enrichment in the optimization procesgaestigated
in this paper for each type of RBDO approachesaAalytical
example and a transformer modelled with the fitement

optimum, locating the global optimum is more impaitthan
improving the accuracy of the kriging model. Howeas El is
highly multimodal, a local minimum is often fouritb be sure
to find the global solution, more attention sholddpaid on the
infill criterion. The Weighted EI (WEI) criterionrpposed in [4]
seems to be more suitable as it adds weights intatession.
Results show that small value of weight preventsl W&m
converging to a local minimum.

However, in constrained optimization, WEI requiras
initial sampling inside the security domain to stdhe
improvement. To avoid this issue, a Modified WEIV{\I)
combined with the surrogate objective functionrspmsed:

(1)

where w is the same weight as in WEI afids the surrogate
objective function. For searching the global optimuthe
weight is typically taken equal to 0.1.

MWEI =WE| - wf

Ill.  INFILL STRATEGIES FORRBDOMETHODS

method are used to compare with normal RBDO withouta Double-loop method

kriging models and highlight the most effectiveagtgy.

I. INFILL SEARCHING CRITERIA

Generally, RBDO can be considered as a combinaifon
deterministic constrained optimizations and religbanalysis.
The criterion called Expected Improvement (El) i2widely
used for optimization without constraints. For doaised
problems, an extended method consists in multigljtire value
of El by the probability that the point is feasibléowever this
probability of feasibility (PF) may prevent the saling on the
constraint boundary where the deterministic optinmay lie.
Another constraint handling method is Expectedaftioh (EV)
but the number of candidate points to evaluatédearery large.
An alternative method is to use the predicted valfighe
constraint functions directly as constraints in th&ll sub-
problem where the objective is to maximize EI ofilyis could
be more accurate than mixing PF or EV with El ia tibjective
function [3].

In addition, with the aim of searching the globatetministic

DLM like Performance Measure Approach (PMA) [5] lzas
nested structure, the outer loop seeks for thermypti and the
inner loop analyzes the reliability.

There are two places where ISC can be used to iraphe
accuracy of the kriging model: outer loop and intoap. As
outer loop is an optimization with inequality camétts, the
criterion MWEI in (1) and the meta-models of coasits can
be used. Additionally for the inner loop, El is dsbrectly with
the original constraints because the equality caimgs of inner
loop are on variables. However as the two loopsasted, the
enrichment in inner loop can bring out thousandsnofdel
evaluations. To check it, two strategies are prego$he first
one (PMA1) adds new samples only inside the ouep,|
whereas the second (PMAZ2) enriches inside botlotiter and
inner loops.

B. Single-loop method

For SLM like Single Loop Approach (SLA) [6], the ima
point is that the model in the inner loop is replhdy an



approximation based on a first order Taylor expamsirhe
probability of failure is then approximated to aVothe
numerous evaluations required for reliability asay Also
MWEI can be used straightly in this optimizatiors important
to note that due to this approximation, the preciss low, so
it's expected that with a surrogate model, two part the
uncertainties will be superposed and the accuraitly he
further reduced.

C. Sequential decoupled method

SDM like Sequential Optimization and Reliability
Assessment (SORA) [7] is based on a serie of sdiqlien
deterministic optimizations and reliability assessts. The
main point is to shift the boundaries of constmitd the
feasible direction based on the reliability infotioa obtained
in the former iteration. The first deterministictiopization aims
at searching the global optimum. Reliability aseessts are
conducted after to locate the Maximum Performanamyét
Points (MPTP) which corresponds to the desired giviity of
failure. Then new optimization is solved by takintp account
the shift computed with MPTP.

Three strategies are proposed. The first one (SQRA&
MWEI and meta-models of constraints to add newtgalaring
each deterministic optimization. Then for relidyili
assessments, El and the surrogate constraintsSior slub-
problems are applied to enrich near MPTP. Thiscanmmient
improves the accuracy of constraint boundariehiénvicinity
of the current design point. It's more rational &k expensive
than improving the accuracy for the whole domain.

The second strategy (SORAZ2) differs from the fose by
the fact that no enrichment of the kriging modglsiade during
the optimization at iterations higher than one ek, it seems
to be more important to add samples on the conssrai
boundaries and the solution of the optimizatioalkiterations
except first is distant from those boundaries.

For the third strategy (SORA3), if the optimum fdun k-
th cycle is close to any of the other- 1 cycles, as the former
reliability assessments have already added pairttss region,
the accuracy is considered to meet the requireswetiere is
no need to add new samples. The proximity criteison

)

where d! is the deterministic optimum found by theh
cycle, o is the standard deviation of the input parameteds,
is the target reliability index. If the criterios satisfied, the

" -d'||<Bo, i=1.. k-1

meta-model will be used straightly and only MPTRe ar

evaluated. For the parts of deterministic optiniaratit takes
the same strategy as the second strategy.

IV. APPLICATIONS

A. Mathematical example

To assess the efficiency of kriging-based RBDO mwa@shthe
analytical problem in [8] with two variables andrdh
constraints is analyzed. The results are giverabiiel'l with an
initial sampling of 20 points. For comparison pwsppresults
given by RBDO methods with the original problem afeo

presented. All the iterative kriging-based RBDO hoels lead
to a reduced number of evaluations. SLA is not eatelenough
because of the approximation used to simplify thl&lbility

analysis. As mentioned, PMA with infill during innéoops

requires thousands of samples to evaluate. The sttategy of
PMA is faster but as it doesn’'t add samples invibmities of

MPTP, it's not accurate enough. Kriging-based SGRategies
lead to the best result. The third strategy isntiest efficient.

TABLE 1
RESULTS OFMATHEMATICAL EXAMPLE USING DIFFERENTSTRATEGIES

Strategy Numbe_r of Optimal solution Optimal
evaluations value
SLA(exact mode 16& [2.2512;1.9677] -1.995!
PMA/SORA (exact model) 3183/531 [2.2513;1.9691] -1.9945
SLA 26 [2.2466; 1.9617] -1.9996

PMA1 29 [2.2494; 1.9649] -1.997:

PMA2 1804 [2.2513;1.9691] -1.9945
SORA1/SORA2/SORA3 142/97/45 [2.2513;1.9691] -1.9945

B. Finite element example

A safety isolating transformer modelled with thenité
element method presented in [9] is used for corspariThe
optimization problem includes 7 variables and 8sti@ints.

Fig. 1. The finite element model of the safety &farmer.

Comparison of kriging-based RBDO methods and the

conclusion will be presented at the conference.

REFERENCES

T. H. Lee and J. J. Jung, “A sampling techniqueagnimg accuracy and
efficiency of metamodel-based RBDO: Constraint larg sampling,”
Computers & Structures, vol. 86, no. 13, pp. 1463-1476, 2008.

D. R. Jones, M. Schonlau, and W. J. Welch, “Effitiglobal optimization
of expensive black-box functionsjJournal of Global optimization, vol.
13, no. 4, pp. 455-492, 1998.

M. J. Sasenaklexibility and efficiency enhancements for constrained
global design optimization with kriging approximations, Ph.D.
dissertation, General Motors, 2002.

S. Xiao, M. Rotaru, and J. K. Sykulski, “Exploratigersus exploitation
using kriging surrogate modelling in electromagndgsign,” COMPEL,
vol. 31, no. 5, pp. 1541-1551, 2012.

J. Tu, K. K. Choi, and Y. H. Park, “Anew studymtiability-based design
optimization,”Journal of Mech. Design, vol. 121 no. 4, pp. 557-564, 1999.
J. Liang, Z. P. Mourelatos, and J. Tu, “A singleganethod for reliability-
based design optimization,” Rroceedings of ASME Design Engineering
Technical Conferences, pp. 419-430, 2004.

X. Du and W. Chen, “Sequential optimization andatslity assessment
method for efficient probabilistic designjburnal of Mech. Design, vol.
126, no. 2, pp. 225-233, 2004.

D. W. Kim, N. S. Choi, K. K. Choi, et al., “A SinglLoop Strategy for
Efficient Reliability-Based Electromagnetic Desi@ptimization,”| EEE
Trans. Magn, vol. 51, no. 3, pp. 1-4, 2015.

T. V. Tran, S. Brisset, and P. Brochet, “A Benchixfar Multi-Objective,
Multi-Level and Combinatorial Optimizations of a f&y Isolating
Transformer,” iNCOMPUMAG, pp. 167-168, 2007.

(1

(2]

(3]

(4]

(5]
(6]

(71

(8]

9]



